
AD-A162 756 SOFTUARE REPORTING METRICS REVISION 2(U) MITRE CORP 11
BEDFORD NA R J COLES ET AL. NOV 95 NTR-9650-REV-2
ESD-TR-85-145 F19629-96-C-06Ui

UNCLASSIFIED F/G 9/2 ML

IIIIIIIIEEIII
IIIIlfllfllfllfllflflf
IEIIIEIIIIIII
IIIIIIh~h

140'

.0.

11111!-25

MICROCOPY RESOLUTION TEST CHART ''"

NA11 NAL BUR.2 Of SANDARS.1963 A

r:..

t

* . o . " . . -

.:,:..:,/.', ,-'.'..,..,.' .-.,..',.'... . . .:.- , .. ,..... , ,....... .. ,..... ,.....,._,

ESTR-85-145

M 9650
Revision 2

Co
')

Software Reporting Metrics
€vD

November 1985

Pip DTIC
FEB 1 0.',.,. .

D
,. "-.-# -d*

gt'.. . *'.*

BhC fILL WU ".
Prepared for Deputy for Acquisition Logistics and Technical
Operations. Electronic Systems Division. AFSC. United Stales
Air Force. Hanscom Air Force Base. Massachusetts

Approved for public release f
distribution unlimited

86 2 7 -13 13 :"'
......-...

I

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever:
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

GEORGE G. JACKELEN, Major, USAF

Project Officer, Project 5720
Computer Technology and Support Division

FOR THE COMMANDER

ROBERT J. KENT

Director, Computer Systems Engineering
Deputy for Acquisition Logistics

and Technical Operations
:-;::.

I-

i

.'- ,_•.. ., % -€ -] d "I "". ,, ""","""". " '' .,' ''"""""" -.""".""-"'.'. -"" ", -"", •L'" "

UNCLASSIFIED

gICUITV CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

. oOT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS t
Unclassified •__""

2. SECLRITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

" I- L s Approved for public release;
S2b DECLASSiFICATION,OOWNGRAOING SCHEDULE distribution unlimited.

4 PERFCRMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MTR-9650, Rev. 2 ESD-TR-85-145

6. %ANIE OF PERFORMING ORGANIZATION Sb. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

The MITRE Corporation fAD

6€ ADODRESS I Sta. Slate and ZIP Code, 7b. ADDRESS (City. State and ZIP Code)

Burlington Road
Bedford, MA 01730

i NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it appiicabieI

Deputy for Acquisition (cont. ALSC F19628-86-C-0001
Sc ADDRESS ,(t%. Stle and ZIP Code) 10 SOURCE OF FUNDING NOS

Electronic Systems Division, AFSC PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO NO .•Hanscom AFB, MA 01731-5000

I1 TITLE Inciude Security Classificalwni 572H
SOFTWARE REPORTING METRICS

12. PERSONAL AUTHORIS)

oles, R.J.; Kasputys, J.A.; Lasko, K.L.; Saunders, T.F.; Schultz, H.P.
13*. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Yr Mo.,. Day 15. PAGE COUNT

Final FROM TO 1985 November 1985 60
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS Contin e on reterse it nccessaa, and Identify by bloci numberI

f FIELD GROUP SUB GR Project Management
* Software Acquisition" I Status Monitorinq a

19 ABSTRACT Continue on reverse .f nece.samnad identlify by blockt numbero

- This paper presents a set of software management metrics that have been
developed by the ESD/MITRE Software Center. The metrics are designed
to assist in monitoring the progress of software development by gaining
better visibility into the software acquisition process. This revision

* reflectsgovernment and industry comments on the previous version, and
includes new charts, information on application of the metrics, and
appendices containing generic and sample data items.

20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED E. SAME AS RPT 1 DTIC USERS C1 Unclassified

t 22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL(nclude
rea ode,

Diana F. Arimento (617)271-7454 Mail Stop

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

• •...p

. * * . * ..

al .' '.... . .*.**

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

8a. Logistics and Technical Operations

UNLSSFE

SECURITY~ ~ ~~ CLSIIATO FTHSPG

ACKNOWLEDGMENTS

This report was prepared by the MITRE Corporation. The work
was sponsored by the Computer Technology and Support Division
(ALSC), Deputy for Acquisition Logistics and Technical Operations of
the Electronic Systems Division (ESD) of the United States Air
Force, Hanscom AFB, MA 01731. Funding for this report was provided
by Project 5720, ESD/MITRE Software Center General Support. This
project is the ESD-initiated effort to improve the acquisition of
Mission-Critical Computer Resources (MCCR). The goals of the
project are to: provide guidance, tools, systems, and techniques to
Program Offices; interact with Air Force and DOD organizations that
establish policies, regulations, and standards for software
acquisition; and direct associated technology efforts.

This report was developed through the cooperative efforts of
the ESD/MITRE Software Center staff with supporting commentary from
staff throughout the MITRE Corporation and ESD. Some of the data
has been obtained from Dr. Barry Boehm's Software Engineering
Economics (Ref. 1). Thanks are also given to the National Securityp Industrial Association (NSIA) who, at the request of Lt. Gen. Melvin
F. Chubb, Commander of ESD, provided a working group that actively
reviewed and commented on the previous version of this document.
The generic data items in Appendix B were developed in part from
information provided by ESD/ALSC. This document has also been
revised for compatibility with the new Defense System Software

FP Development Standard, DOD-STD-2167.

I-.7

TABLE OF CONTENTS

Section Page

LIST OF FIGURES v

L LIST OF TABLES v

1 INTRODUCTION

2 SOFTWARE REPORTING METRICS3 *

3 APPLICATION OF THE METRICS 3
35.

4 CONTINUING METRICS EFFORTS 41

REFERENCES 45

b Appendix
A GENERAL INFORMATION FOR SOFTWARE DEVELOPMENT 47

B GENERIC METRIC DATA ITEMS 51

C ENHANCED METRIC DATA ITEMS 55

D DATA DEFINITIONS 61

Acce~ion For

NTIS CRA&I
* * rnC TAB 0

Ur-,annoj: ced

By
Dict ibt

Av'3ioity Codes
AvL~l. dff or

Dist Spxcial

A-i
V

LIST OF FIGURES

Figure Page

1 Software Size 5 K

2 Software Personnel 9

3 Software Complexity 13

4 Development Progress 17 . *.

5 Testing Progress 21

6 Computer Resource Utilization Estimates 25

7 Software Volatility 29

8 Incremental Release Content 33

LIST OF TABLES

Table Page

1 Software Complexity Ratings 15

vi

---- -

V%.%. ~ *- °.*

SECTION I

INTRODUCTION -

This document is intended to help Project Managers prepare
software development status reports. The document describes
Software Reporting Metrics that may be generally applied to check
the progress of software development in an acquisition project. It

__ also provides information that reflects experience on previous
acquisition projects.

-System Program Offices (SPOs) are expected to use these metrics
to augment conventional acquisition system development reports such
as cost and schedule reports. The successful use of these metrics
depends on the program manager's enforcement of a serious technical -

review of the monthly numbers. The metrics provide a top level
overview of software development status. They are not intended to
provide an in-depth evaluation of software. It is only through
reviews and related interpersonal communications that the
significance and relevance of the contractor's estimates can be
ascertained.

Section II of the-doeumserit presents each metric. A description
is provided of the information intended to be evaluated, the normal
behavior patterns that may be expected, and the mechanics of
collecting and reporting the metric data. Each metric is
accompanied by a sample plot. The plot is intended to illustrate
representative data for a 24-month acquisition effort. An
explanation of the possible interpretation of the plot is presented.
Also, a list of notes is included that provides some general
guidance in interpreting the data.

Section III discusses application of the metrics. An
explanation is presented of how the metrics can be expanded in scope
and depth to address project specific needs. Also discussed is why
the metrics data should not be the only parameters collected; they
should be augmented by more detailed reports appropriate to the
specific project. This section also discusses the mechanics for
obtaining and processing the metrics data, and the pros and cons of
using electronic transfer as a means of data collection. A brief
discussion of an automated tool for storing, processing, and
presenting the metrics is also included. -

V

a-all.-Jl .& 7. m 7WE" 7 - - -2-- - -- - - -. .4- - - a- a. r-.. ..- - - .. Wr. _

Section IV of-the-dcmewdescribes continuing work efforts in .
the area of software status monitoring and metrics._-This section
includes areas that will be addressed and integrated with the
metrics efforts. The immediate thrust of this integration effort is
in the area of cost and schedule data. In addition, many comments "-.
have been received on the metrics, and there are plans to address.-
and incorporate those comments not reflected in this revision. ""

Appendix A of the document presents general information and _
guidelines that reflect past experience with software acquisition.
The reader is cautioned that this information is intended to be' -
broadly applicable to the type of Command, Control, Communications, " '''
and Intelligence systems that are acquired by the Air Force and....
other DOD organizations, Its broad nature means that it is -.
inherently NOT ABSOLUTE. Cases exist that legitimately violate the
limits indicated; but, caution is recommended whenever a project '.

,%

proposes to violate any of these factors. [[.

Appendices B and C present generic and sample data items, "
respolleonly, fr c octing the necessary data to support each

software reporting metric. Appendix D contains definitions to
assist in understanding these data itemsndtn my o t

hro edrt

and icorpratethos comentsnot rfleced i thi revsion

Appedix ofthe ocuent resnts eneal iforatio an

guidlins tht rflet pat eperincewit sofwar acqisiion

The eadr iscauione tht ths iformtio is nteded"o.b

broady aplicale t thetypeof Comand ConrolCommnicaions

* ad ntelienc sstms ha ar aquiedbytheAi Focean

otherDOD rganzatios. Is brad nture eansthatit'i
ineenl OTASLUE asseis.ha5eitmtlyvoat h

• ."".".'2.L2-. limits- i nd.L.',-.,icted;. but '?2','cuion'is recommended--- whenever,--',-','-- .,. a project-- '-.'

SSECTION II

SOFTWARE REPORTING METRICS

The format of this section has been selected to present each .'

metric on a series of pages. The first page describes the intent of
the metric, some comments related to the profile presented when data
is collected and plotted, and a definition of the data to be
collected. The "definition" is intentionally loose. The definition
of the data to be collected should be formally established through
Data Item Descriptions (DIDs) or Program Management Review (PMR)
deliverables that are tailored to each software acquisition program.

The second page of each metric contains a sample chart of
metric data and a brief discussion interpreting the chart. The
third page contains notes about the metric and its use. The notes
and discussions presented are intended to help in the interpretation

" -of metric data. They should be viewed as general information, not
as inflexible principles.

U The metrics are plotted on a chart that shows the currtnt :.onth
plus the previous 12 months of activity and allows room for the next
five months of data to be predicted. Milestones, such as System
Requirements Review (SRR), System Design Review (SDR), Software
Specification Review (SSR), Preliminary Design Review (FDR),
Critical Design Review (CDR), Test Readiness Review (TRR),

* Functional Configuration Audit (FCA), Physical Configuration Audit
(PCA), and Formal Qualification Review (FQR) may be indicated on the
abscissa. In some cases, planned values are plotted. Where planned
data is shown, it is the data derived from the first plan submitted

S".' to the Government. For example, the personnel profile is usually
provided in the proposal, so the personnel profile from the contract
is shown. An additional planned profile may be included if the
contractor is reporting his current anticipated profile. Another
example is in testing where the planned profile should be that
established when the contractor's test plan was approved.

The sample plots shown in this document are formulated from a
hypothetical project. This hypothetical project was identified by
the contractor to require a software development of 120 thousand
Source Lines of Code (SLOC) and 1200 staff months over a 24-month
schedule. The project milestones are as follows: SRR at month one,
SDR at month two, SSR at month three, PDR at month seven, CDR at

, month 12, TRR at month 20, and FQR at month 24. In each of the

I sample plots the current month is identified.

.. 4.2. 2..

k%

1. SOFTWARE SIZE j

The Software Size indicators are intended to show the magnitude
of the software development effort. Source Lines of Code (SLOC)
affect the software engineering effort necessary to build the i

system. Growth in SLOC can lead to schedule slips and management
problems due to understaffing.

Most programs exhibit rising estimates of SLOC over time. The
development effort for a system may be reduced if some of the SLOC
can be reused from other programs. There is some effort associated
with integrating lifted code (that is, borrowed from some other
source without change, such as, operating systems or an application
previously completed) and even more effort when modifications are
needed. The degree of effort must be estimated for each system.

The count of Total SLOC, SLOC to be lifted from other programs,
SLOC to be modified from other programs, and SLOC to be developed as
new code for this program should be updated and reported at the end
of each calendar month of the contract. The term "SLOC" is often
interpreted to exclude nondelivered support software such as test
drivers. However, with respect to these metrics, newly developed
support software programs should be included in the Software Size
counts.

Any reasonable definition of SLOC may be used as long as both
the contractor and the SPO understand and accept it. An example of
a definition of source instructions, found in Reference 1, is
presented below.

SLOG includes all software instructions created by project
personnel and processed into machine code by some combination
of preprocessors, compilers, and assemblers. It excludes
comment cards and unmodified utility software. It includes
job control language, format statements, and data
declarations. Instructions are defined as lines of code or
card images. Thus, a line containing two or more source
statements counts as one instruction; a five-line data
declaration counts as five instructions.

4

Software Size
SLOC

[" (K)

150 Totl SLOC ,

10 Motbal SLOC - -

New SLOC- - - -

130 L-Itd SLOC -----------

120

110

100 L

90

80

70

60 /- - -V

30-----------------------------/

20------------------------------
*20 •....... " L

10

1 1 2 3 4 5 6 7 8 9 10 11 I21 , 14 15 46 17
SP SDR SSR POP 'urn

Program Month

"- DISCUSSION

At PDR for the hypothetical project, the chart shows the number
of lifted lines of code decreasing and the number of modified lines
of code increasing by the same amount. Discussions with the "
contractor revealed that a portion of the code chat was originally
to be lifted would require modification.

The contractor also explained that the increases in the number
of new lines of code at months nine and 13 were the result of
requirement changes originating from ECPs.

5

.- ".

4.%

4- .

'. -'.. .. - * . * * - - * .. . *.

I*'.

NOTES

1. The estimated instruction counts for one month should not vary
from the previous report by more than 10 percent without
explanation. However, continuous growth of even 10 percent

would be too high over the life of the program. Typically,
growth would be event driven, that is, after PDR and CDR.
Commonly, changes will be small between major reviews and
potentially large at major reviews. A change in the estimated
SLOC count does not necessarily imply trouble -- it may imply
that the contractor has a new understanding of the requirements
and his design approach. If any SLOC count changes by more
than 50 percent, the software development management approach
should be reviewed for adequacy.

2. SLOC is a factor that directly affects the number of staff
months required for software development. Implementation
should be done with a High Order Language (HOL) wherever
feasible. Among the benefits of HOLs are increased code
reusability, improved maintainability, testability, etc.

6.

i6[

97_ --"

"_'1

2. SOFTWARE PERSONNEL Y

The Software Personnel indicators are intended to show the
ability of the contractor to apply resources to the program and LM
maintain sufficient staffing for completion of the program. The
software staff includes the engineering and management personnel
directly involved with software system planning, requirements
definition, design, coding, test, documentation, configuration
management, and quality assurance. Experienced personnel are
defined as those individuals with a minimum of three years
experience in software development for applications similar to the
system under development.

The staffing profiles for total software staff and for
experienced software staff should be plotted at the beginning of the
contract. A normal program may have some deviations from the plan,
but the deviations should not be severe. A program with too few
experienced software personnel, or one which attempts to bring many
personnel onboard during the last stages of the project's schedule,
is in trouble. The normal shape of the total software staff profile
is to start at a moderate level, grow through the design phases,
peak through the coding and testing phases, and then gradually taper
down as integration tests are successfully completed. The normal
shape of the experienced staff profile is to be high at the initial
stage of the project, dip slightly through coding and then grow
somewhat through testing.

The count of actual total software staff and experienced
software staff should be reported at the end of each calendar month.
Counts of project personnel lost should be maintained so that the
personnel turnover rate can be tracked.

8

* i..-.,a

Software Personnel:':: Personnel

Count

"0 Planned 100.

go Actual/Estimate -

80 ----------------

70

60

50 Total
" - 40 .'/Experienced "

30

20

10 Personnel Losses

0 56 8 9 10 11 12 3 14 15 17 18 19 20 21
~~Month "'

5! Program Month

DISCUSSION

Prior to CDR, the chart shows that the total number of actual
personnel is lagging behind the total number of planned personnel.
Also, the number of actual experienced personnel is higher than

originally planned.

The SPO initiated a dialog with the contractor to discuss the
deviations in scheduling. They found that the contractor was having
difficulty in staffing and was adding more experienced personnel in
an attempt to compensate. The SPO should monitor this closely to

ensure that the new plan is adequate and can be accomplished.

9p

*. a. 9

-. .* ~ . * .L. .% ..

. Ilk

= , %..7

w-.r "* _ """""-.1 " 7- '- -
-

k .w -.-. .t' -. 'k.,..k%,

C6777,

I..

NOTES

' ei

1. The ratio of total to experienced personnel should never exceed
6:1. (3:1 is a typical ratio for most real time C3 systems).

2. The time required for software development depends on the
staff-months delivered.

a) Understaffing is an early indication of schedule slippage
f

and potentially an ever-accelerating rate of slippage. ,.

b) Adding staff to a late project will seldom repair the
schedule.

3. A program that is maintaining the staffing profile, but which

is experiencing a high personnel turnover rate is not
maintaining needed continuity among the design and
implementation staff. The planned rotation of some staff, as
the phases of the development change,

is reasonable; however,
f"'

losses that would impair the project knowledge and experience
base should be flagged.

. ..-

.6

10

.

.-.

°°

. •.-

b - -~. SOTWR COMPLEXIT- -- --Y-- --

The oftare ompexiy inicaor i inendd tosho th

inor. to SOFWAed oMLXT esiaecmpeiyi B oh'Cntutv

The Sotac omplexity indioftar is ntendeced to shwg theh
dereof sheisticfaioraexpect in the staenIcdes notil
incude devneopmnt ccursonstraieqirmnts suhaceul n s hnereforea
neotatuieau of software deveionlopymn diffculty. Teuc.

dvlpdChneintecomplexity indicato ishalultelt be a vrl inctor.rethis

oveal cotr omplexity indicator is ntendaed drvble fomithe
informagtned traof tmae complexity raings. forehach Costutier

Sthae Complirtiof Item sta is nonexetee tochngbuch
threogpe fe ofia program uot insomtae. intneshnge ill
occur.ihaes mayrin oureinrense o rhequiremenotwcanes ora
realloctonaofesoftware fuciornlitsy mongprceSortwreourcs.ams
It maNlot chag linte reos okowedfaied as thamybe deini

ase an~ wlb indictiodo impratcgsin the prcuatogram

The Software CompaleI windicateor clcltedmibyn comining
th weighte avmperage sol the hes complexity rating ahCmue

deppopre for ths programmuporty seowrme. opeigtiong. ise
esalse codn otepercent of the total software cotie(neahC rSSPwlCb

(SP).~ Note tha lifery modiie coet thatimyneg nluedi
the CfCr wil beinlded inmthexcalculation.;

The ~~ ratng iabl 1no illeue o eemnn complexity. raig
A~~ CfCI' copext shudgehh" hhs complexity rating

1 for a "very low" complexity rating; and

6 for an "extra high" complexity rating.

The total of the weighted complexity ratings will result in a number
between 100 and 600. This number will be updated and reported at
the end of each calendar month of the contract.

12

Software Complexity
Complexity
Rating

600

550

500

-450
400

350

300

250
.

0000

200

150

1004 1 2 345 6 7 8 9 10 11 1 13 14 15 16 17
SRR SDR SSR POR DR

urrnt
,.nth

Program Month

DISCUSSION

In the chart, the complexity rating increased during
preliminary design and during detailed design.

During preliminary design, the SPO was concerned over the
steady increases and queried the contractor. They found that the
increases during preliminary design were a result of the
contractor's increasing awareness of the complexity of the software
development.

During detailed design, steady increases in complexity alerted -' -.
the SPO again. After dialogue with the contractor, it was

determined that increased complexity was introduced into the system P
through requirements changes originated by ECPs.

[-. .

* .. * ..

JJ

,

NOTES

1. The complexity rating for one month should not change from the
preceding report by more than 10 percent without explanation.

2. Programs with complexity ratings over 450 should have more than

40 percent experienced software staff.

3. Wherever possible, employ mature off-the-shelf operating
systems, compilers, database management systems, and support
software.

4. For programs of similar size, real-time applications are
generally more complex than non-real-time applications.

14

09.." ..

-. .p -. '." -... ...,

Table 1. Software Complexity Ratings

Data

Control Computational Device-dependent Management
'L Rating Operations Operations Operations Operations 6

Very low Straightine code Evaluation of simple Simpl read, wite Simple arrays in
" - with a few non- expressions: e.g.. statements with min memory"

nested SPa oper- A = B + C simple formats
pm ators: DOs, D - E)

.- CASEs, ..
" ,', IFTHENELSEs. ".,

Simple predi-
cates

Low Straightforward Evaluation of mod- No cognizance Single file subset-
nesting of SP op- erate-level ex- needed of par- fing with no data -

erators. Mostly pressions, e.g., ticular pro- structure
simple predicates 0 = SORT cessor or I/O changes, no ed-

(B"2-4.'A'C) device charac- its, no intermedi-
teristics. I/O ate files
done at GET/
PUT level. No
cognizance of
overlap

Nominal Mostly simple nest- Use of standard I/O processing in- Multifile input and
ing. Some inter- math and statisti- cludes device single file out-
module control. cal routines. Be- selection, status put. Simple
Decision tables sic matrix/vector checking and structural

operations error processing changes, simple
edits

• High Highly nested SP Basic numerical Operations at Special purpose
operators with analysis: multivar- physical I/O subroutines ac-

many compound iate interpolation, level (physical tivated by data
predicates. ordinary differen- storage address stream con-
Queue and stack tial equations. Ba- translations; tents. Complex
control. Consid- sic truncation, seeks. reads, data restructur-
erable intermo- roundoff con- etc). Optimized ing at record
dule control. cems I/O overlap level

Very high rleentrant and re- Difficult but struc- Routines for inter- A generalized, pa-
cursive coding. tured N.A.: near- rupt diagnosis, rameter-driven
Fixed-priority in- singular matrix servicing, mask- file structuring
terrupt handling equations, partial ing. Communi- routine. File

differential equa- cation line building. com-
tions handling mand process-

ing. search
optimization

Extra high Multiple resource Difficult and un- Device timing-de- Highly coupled,
scheduling with structured N.A.: pendent coding, dynamic rela-
dynamically highly accurate micro-pro- tional struc-

- changing priori- analysis of noisy, grammed tures. Natural
ties. Microcode- stochastic data operations language data
level control management

" SP = structured programming

Barry W. Boehm, Software Engineering Economics, &©1981, p. 122.
Reprinted by permission of Prentice-Hall, Englewood Cliffs,
New Jersey.

15

4. DVELOMEN PRORES
The ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ p Deeomn rges niao sitnddt oio h

contractor's~~~~~~~~. ablt o.anan'eeomntporss twl

The Dttso swr evelopment Prgrs ndctr ist nedes toemoior the

(TRR). This is much too late in a program to recover if significant
o

problems are discovered. An earlier indication of success or
problems is the degree of adherence to a planned schedule for unit '

design, development, and test.

The design of units usually begins around PDR. Data to monitor

the design progress is rarely delivered to the government as a ji.

contractual obligation. But if it is available, a count should be

plotted of the number of unit design packages that have been closed,
that is, the design has passed internal review and is considered
''frozen' by the contractor's software development methodology.

After CDR, when the contractor begins developing units, a healthy

program will experience a steady progression of new units. If the

units are being developed in spurts, it indicates problems with

managing the software. Sporadic unit development can be caused by -V

factors such as over-utilized development machines or ~
* ~under-experienced staff. It results in a high pressure environment '.

in which all the software is due at once. For a normal program, the ~
total number of units that have passed unit test should be

continually increasing, and the total number of units that have beenU

integrated should be similarly rising with a constant slope.

The unit test and unit integration schedule should be reported

by the contractor at CDR. The number of units whose design packages

have been closed, the number of units passing unit test, and the

number of units passing integration tests and accepted into the

contractor's configuration control system as integrated software,

will be updated at the end of each calendar month of the contract.

16

% %j
rw-

%-.

%

Units" Development Progress" "" Units .

120 Planned - -- -
"- ~ ~~~Actual_- ?

100

I- t _.

UnitsUnits

60

':" 40 Tested Integrated .;

6 7 8 9 10 11 112 113 14 15 16 9 201 21 22 23ITiR
POR R CurnTRR
-I I IMonth "

Program Month

DISCUSSION

In this chart, the plot of units actually designed follows
closely the plot of units planned to be designed until three months
after PDR. At this point the actual number begins to deviate
significantly from the planned number. This growing lag prompted
the SPO to investigate. This led to the conclusion that increased
complexity, introduced by ECPs, prolonged the design of the system.

Currently, the number of units actually tested and integrated
lags behind the number of units planned to be tested and integrated.
The SPO ascertained from the contractor that the lag resulted from
the increased lines of code to be developed, tested, and integrated.
These slips may indicate that the project schedule cannot be met.
The SPO should closely monitor the progress of testing and
integration to assess the likelihood of the project schedule not
being met. "" "

17

" ~~~~~~~~~~~~~~~~~...o-........ •. *...........-. .-. -.-. -. •,.. . .-. -. . • .

.47,

IL • .-.- '..:

NOTES

1. Between PDR and FQR, monitor the software components designed,
coded, tested, and integrated as indicators of develcpment
progress.. ,

2. Units tested and integrated should progress at a reasonable -.

rate and according to plan.

3. The Software Development Plan should take into account the _
iterative nature of test and integration. (i.e., The test
program should begin and continue throughout the software
integration activities.)

.. 1 ..::

1- . .

.'-Li :

"p b.I"t°

,I.:?-
'1° ° .°

°U o .

i . .: .

18:-:.-

• bm, ,...

::

.- .- - . o - S - .- °- .- *-. * -4 4 * .° ..- .-- , -4 . - , o . o .fl .- . - . * -4 * ' - *- . . . - O O .

4

5. TESTING PROGRESS ~~

Test Readiness Review (TRR) is the earliest milestone at which
the Government can officially determine whether or not the desired
functions are being provided. The Testing Progress indicators are
intended to show the degree to which the contractor's implementation
of the design is meeting program requirements. The testing progress
indicators also show whether the test program is going to be
extended or whether it may be concluded on a reasonable schedule. .

The Tests Scheduled plot should show the cumulative count of
tests planned to be completed for TRR and Formal Qualification
Review (FQR). A plot of tests that have been successfully passed
should overlay the schedule if all tests are passed on schedule. -t'-

Most programs will experience schedule slips or failed tests.
Therefore, the Tests Passed plot can be expected to fall below the 4
Tests Scheduled. The degree to which it falls is an indicator of :
the readiness of the system to have entered the test program.

Problem reports should be counted. These counts should be
plotted on a chart as the incidence of problem reports in the
reporting period; additionally, a count of problems remaining open 4.
should be plotted. As these problems are resolved, the number of
problems remaining unresolved should decrease. Note that an
ambitious test plan may prevent the number of unresolved problems..
from decreasing.

The Testing Progress indicators show a general view of testing
progress. It is expected that the SPO will establish a more
detailed view by tracking the trouble reports. For example, the
longevity of trouble reports can indicate how well the contractor is
solving problems. The number of units changed per trouble report
can reveal how well functional partitioning has been preserved.

A plot of the cumulative count of tests associated with TRR and
FQR should be presented before TRR begins. The count of tests
passed, problem reports filed, and unresolved problem reports will
be updated at the end of each calendar month of the contract.

20

Testing Prores

Testin Progres

40

30/

20 -

0 I 12 13 14 15 16 17 18 19 20 21 22 24

Program Month

Problems

toUnresosed Problems Repor-

New Problem Reports - - - -

60

40

20

0 11- 12 13 14 15 16 17 18 19 20 21 22 24
CD0 .1 C - op

Program Month

* DISCUSSION

In the first chart for Testing Progress, the number of tests
* . passed closely follows the number of tests s-cheduled.

In the second chart, the number of new problem reports peaked
after CSC testing began, then quickly decreased. The same pattern
occurred for CSCI testing. The number of unresolved problem reports
generally decreased as testing continued.

The program office maintajined close contact with the testingr
staff throughout testing. Although there were problems, they were
not major and were resolved quickly.

21

r

. '7

NOTES
.4

1. The tests passed should converge to the tests scheduled as FQR
approaches.

2. The unresolved problem line reveals whether or not the
contractor is solving more problems than he is identifying. If
the slope of the line is positive (increasing to the right),
the test program is revealing problems faster than the-
contractor can solve them. If the slope of the line is
negative, the contractor is on a healthier path towards
completing the tests.

3. The problems unresolved should decrease toward zero as FQR
approaches. .-

°.

4.

*.- .

22

U-

% 6. COMPUTER RESOURCE UTILIZATION

The Computer Resource Utilization indicators are intended to
show the degree to which estimates of the target computer resources
used are changing or approaching the limits of resource
availability. The three major bottlenecks that can prevent a system
from performing within the capacity of its hardware are computation
power, memory, and input/output (1/0) channels. Regardless of
whether the system architecture is distributed or centralized, these
parameters should be carefully monitored to ensure that the software
design will fit within the resources planned.

It is normal for large system acquisitions to specify that the
completed system will have 50 percent spare capacity in memory, G- i-

Central Processing Unit (CPU), and peripheral device I/0. This is
usually interpreted to mean that the software could require half
again as much resource as it uses without exceeding the capacity of
the hardware. Most development projects experience an upward creep
in the amount of resources estimated to be used. If this upward
creep exceeds the 67 percent utilization limit, the project may
elect to expand the hardware capabilities. Whenever a resource3
expansion is approved, the utilization curve, or curves, affected
will drop to a new (hopefully below 67 percent) value.

The contractor's estimate for CPU, memory, and I/0 resource
utilization should be updated at the end of each calendar month of
the contract. For projects where multiple computing resources such
as a distributed network are used, a separate plot should be
deve loped for each resource.

-7

24

S.,77

l~0 Cannel Computer Resource Utilization Estimates
Percent
utilization

90 Memoy------

80

L. 70 Planned Spare .

60 a~gs,~ -.
50 -

40------------

30

20

10

0I - 7I 1 4' 15 1$ 17 1 19 222 23 241

)urnt

Program Month

- .. DISCUSSION

In this chart, each of the resources steadily increased in
usage. While CPU and 1/0 channel usage remained within the planned
limit, the memory usage exceeded it. Concern by both the program
office and the contractor resulted in additional memory being added
to the system.

25

-- A -NOTESL

1. CUuiiainsol lo iiu f5 ecn pr.

1. PUandmr utilization should allow a minimum of 50 percent.

spare.

3. Planned 1/0 utilization (channels and data rate) should allow a
minimum of 50 percent spare.

4. Performance deteriorates when utilization exceeds 70 percent
for real-time applications. Worst case peaks in load cause
more frequent conflict among processes competing for processing
resources.

5. Resource utilization tends to increase with time. Plan for
this expansion early in the software development cycle.

6. Schedule and cost can increase dramatically as the spare drops
below 10 percent. L.
*Confusion exists surrounding the interpretation of "50 percent
spare. Contractors often argue that the requirement means
they must preserve room for 50 percent growth in their use of a
resource. (For example, 67 percent of the resource may be__
utilized leaving 33 percent [50 percent of 67 percent] as
spare.) The Government sometimes uses "50 percent spare" when
it really intended to allow only 50 percent of the resource to
be used. The government should have requested 100 percent

spare.

26

-tic.. . . . L - .. - ..- W6. - V- a - - -

7. SOFTWARE VOLATILITY

The Software Volatility indicators are intended to show the
degree to which changes in requirements or changes in the
contractor's understanding of the requirements affect the
development effort for a program. When a program is originated, the .~

details of its operation and system design are rarely complete. . S
Consequently, it is normal to experience changes in a system's
specifications as requirements are better defined. At some point in
the program's history, the requirements should be firm, and only
design and implementation issues can cause changes to a specifi-
cation. These design and implementation issues are usually caught
at the Preliminary Design Review (PDR) and Critical Design Review
(CDR). When the design reviews reveal inconsistencies a
discrepancy report is opened. The discrepancy may be closed
(resolved) by modifying or clarifying the design or by modifying the
requirements. When a requirement, design, or implementation issue
causes a change to the original scope of the project, an Engineering
Change Proposal (ECP) may be submitted.

The plot of open discrepancies is expected to spike upward at
each review and then exhibit exponentially decreasing behavior.
Programs that issue clearly written specifications will experience r
spikes that are low; programs that have good communications between

the program office, systems engineer, and contractor will have a

high rate of decay to this curve. For each approved Engineering 1
Change (EC), the software affected should be reported. This
indicator will track the degree to which ECs cause an increase in
software development effort. Large numbers of ECs and affected SLOC
indicate a program that has not established firm requirements before
initiating a contract.

The number of discrepancies identified at each review are
recorded at the conclusion of the review. A discrepancy is defined
as any action item, clarification item, or requirements issue that
must be resolved by either the contractor or the Government. The
count of open discrepancy reports is maintained by the program
office and plotted at the end of each calendar month of the
contract. The number of SLOC affected by ECPs is determined by the
contractor for each ECP submitted. The cumulative count will be
changed only for ECPs that have been approved by the configuration
control board. The cumulative count of SLOC affected by ECs will be
updated at the end of each calendar month of the contract.

28

n7~

I.-'

SLOG SLOC Affected by ECPs
(K)
50

40

30

20

10

0
314 5 6 7 8 9 10 11 12 13 14 > 16 17 18 19 20""'-

Program Month -

Open Discrepancies
Units

100

80 %
60

40

20

0- 3 4 5 6 7 8 9 10 11 12 13 14>(16 17 18 19120

SSD IC -current TR
S L Month[': -

Program Month
D S C U S S IO N'. " .:

Software Volatility has two charts. The first chart shows the
the SLOC affected by ECs increasing at months four and nine, then
decreasing at month 14. At each increase the SPO determined that
the increase was the result of additional requirements. The
decrease at month 14 resulted from the relaxation of some

-: requirements.

at The second chart shows the number of open discrepancies peaking

at PDR and at CDR. The steady decrease in this number after PDR and
CDR is attributed to the contractor's ability to resolve the
discrepancies.

29

..

'- ,

NOTES

1. Requirement uncertainty leads to changes (ECPs) that result in
cost growth and delayed completion of system.

2. Firm requirements should be established before initiating a
contract. Alternatively, a planned prototyping approach should
be taken.

3. If Software Volatility has not settled down by CDR, the
requirements should be frozen for an early delivery increment
and the program reopened for requirements review by the users
before PDR of the second increment. Note that major
requirements issues should have been settled by PDR; if the
software volatility remains high to CDR the program is in r
serious trouble.

4. The count of SLOC affected by an EC should be positive if
additional software must be developed to address the EC. The
count should be negative if less software is needed and the
software in question has not been developed. The count should
be unaffected if less software is needed but the software
already has been developed.

3p

30..,

... *'** '*.

-.. j..-. 'S. __ ____ ____ _- _

- ...---.- ~ - - --- -

%. ~.*f

p
~ -

...- %*
.- .1~

I

* 'a.

C?

9..

p

(7

8. INCREMENTAL RELEASE CONTENT

The Incremental Release Content indicator is intended to reveal
the contractor's ability to preserve schedule and system function.
A common approach used to preserve schedule is to postpone program
capabilities. This indicator is useful when the contractor's
development plan calls for incremental software builds or
"releases." Decreases in the plot of units per release may indicate
a program is off-loading functions from early releases to later
releases. Increases in the plot of units per release may indicate a
program is having unanticipated growth in the complexity of the
functions to be delivered.

Proper behavior would be for the number of units to remain
constant for each proposed release. Common behavior is for the F

number of units in early releases to decrease as the release date
approaches. In addition, increases in the program's size leads to
additional units added to the later releases. In a program whose
designs were well prepared for PDR and CDR, the number of units
should not increase significantly after CDR. A program that is
developing its capabilities on schedule will maintain a constant
number of units in each release.

The number of units proposed by the contractor for each .

anticipated release should be updated at the end of each calendar
month of the contract. The plot of unit counts should extend to the
completion date for each release.

Note: The term "release" does not necessarily refer to con-
tractually obligated delivery of software. The normal software
development process in which the contractor assembles increasing
portions of the software results in releases that may be monitored.
As each of these is prepared, the functions expected can be compared
to the functions actually included.

4%I

32

.. ,WWI&

Incremental Release Content
Units

FM 150

140

130

120

110 Release 3
100

Release 2A
80

70

60

50
Release2

20Release I1N

10

3 5 6 7 8 9 10 11 112 13 14 16 17 18 1912SSR PDR CDR Curen TRR
Month ~

Program Month

DISCUSSION

This chart shows the number of units for releases 1 and 2
decreasing while the number of units for release 3 is increasing.
Investigation by the SPO determined that the contractor was shifting
functionality from the earlier releases to the later ones. Also,
new functions resulted in the creation of an additional release,
release 2A.

33

• --. .r - -: - ; . _, - - , ---- . -;..J - -J ..,' :-, v' -."r ' .' -. s .- h . -- - L. - -,

NOTES

1. Number of units should remain relatively constant. However, it is
common for the number of units to increase as the program's design
matures.

2. A significant increase in the number of units per release might
indicate the program is having unanticipated growth in the complexity -.
of the functions to be delivered.

3. A decrease in the number of units per release might indicate the
program is off-loading functions from earlier releases to later
releases.

4. To preserve the readability of code and improve maintainability,
software should be divided into practical partitions of functions and
subfunctions. It is commonly suggested that software units should be
sized at 50 lines of source code and should not exceed 100 lines.

5. Testing should begin integrating pieces of the software as early as
possible. Software builds should be encouraged to correspond to
operationally useful capabilities as soon as is practical.

34

A. _ _ _ _ _

SECTION III

APPLICATION OF THE METRICS

The previous section presented eight basic Software Reporting Metrics.
These metrics represent areas in which data should be provided by the
contractor to aid the System Program Office (SPO) in monitoring the
software development effort. The data required to support each metric is
intended to be generic and to address the project status at a high level.
These generic data requirements should be regarded as a minimal set. To be
more effective, the metrics should be analyzed to see where additional data
would provide better insight for a particular program. The data
requirements presented should be expanded wherever appropriate, depending
on the risk areas, the nature of the software acquisition, and the existing
software monitoring metrics being used by the contractor. This section
discusses how this analysis can be performed, illustrates some examples of
how the metrics may be expanded, and discusses the actual use of the
metrics in the SPO.

1. DEFINING THE DATA TO BE COLLECTED

As mentioned in the introductory paragraph in Section II, the metrics * -.

collection is accomplished by preparing Data Item Descriptions (DIDs) or
Program Management Review (PMR) deliverables that can be placed on

n contract. This description should be as clear and precise as possible to
prevent misinterpretation on the part of the contractor when providing the
data, and on the part of the SPO when processing and analyzing the data. A
set of data items that match the eight generic metrics has been included in

" Appendix B. These data items define, for each metric, the particular data
that DID(s) or PMR deliverables should require the contractor to provide.
They indicate the level of detail needed, but they are not necessarily
complete for a specific project and only support reporting at a high level.
Definitions are provided in Appendix D for certain data items.

Regardless of whether the metrics are augmented or not, an analysis of
the data items and their appropriateness should always be undertaken. The
contractor may have his own methodology for monitoring his progress. This
should be taken into account to ensure that the metrics collection meets

. the minimal set, while not causing the contractor to produce duplicate
reports to satisfy his own metrics as well as the government's. For
example, if he counts SLOC for his own monitoring of Software Size, but
defines SLOC differently from the definition initially selected by the SPO,
it may be more cost effective and just as useful to report Software Size
according to the contractor's definition. The important issue is to ensure
that both parties agree on the definition of what is being reported.

35

: ~ ~ -.. .. o.. . . % °. % *,* % **** - . * . - . •... .° ... • .,. •.°. .• .-. •- . o. . °

...

IWO

The metrics will not replace dialog and periodic reviews, but .
augmenting the metrics to obtain additional data can help the SPO in
identifying areas that require further investigation and dialogue. The L
following paragraphs discuss how each metric may be expanded or augmented
for sample cases. This is presented only as an illustration of the
methodology for performing this expansion rather than as guidance on the

particular data that should be added.

It may be desirable to expand several of the metrics when multiple
CSCIs exist. The level of detail presented in the generic metrics is at
the program level. Often more detail is required because the CSCIs vary
considerably in expected size and complexity. Collecting the appropriate
metrics at this level may provide a clearer picture of the problem areas
and actual software development progress. In addition, if CSCIs are used
as a basis for subcontracting portions of the job, collecting data at this 6
level would provide insight into subcontractor performance. The data then
can be aggregated to the program level. Therefore, whenever multiple CSCIs -...

or subcontractors exist, it may be appropriate to expand the metrics. This
may require adding data to each metric to identify the CSCI.

The Software Size metric collects data on lifted, modified, and new "
SLOC. An appropriate expansion of this metric may be to collect this data
based on the source language in cases where software is being delivered in
more than one language. This expansion would require adding a field to the
software size metric for a source code language identifier. . . -

The Software Personnel metric collects data on years of experience to w
gauge whether the contractor is staffing the job with the appropriate mix
of personnel. In some cases, it may be appropriate to expand the
categories for which staffing is reported. For example, if particular
skills such as Ada, DBMS or Al are needed to successfully complete the
effort, the SPO may want to add a field to indicate the level of experience
in each skill area. Another expansion may be to report staffing according
to the type of task, such as testing, to ensure that critical tasks are
staffed appropriately.

The Software Complexity metric may be expanded to include other
complexity measures. For example, Halstead's (Ref. 2) or McCabe's (Ref. 3)
complexity measures can be used after CDR in addition to the complexity
estimates derived from Table 1.

The Development Progress metric can be expanded to collect data at the
CSC level as well as the unit level. A project may wish to be able to
track the development progress of the CSCs by adding a field that reports
the number of units designed/tested/integrated for each CSC. The project h -

* 36

......................... .J.. ,...-. ,..-...-- ,:

may only wish to do this for CSCs that are part of a critical CSCI. In
addition, an expansion may include tracking the number of units for which
Program Design Language (PDL) code has been developed to aid in monitoring
the design progress.

The Testing Progress metric can be expanded by tracking the length of
time a problem report is open, as well as tracking how many are open. This
can help in identifying how quickly problem reports are being addressed.
This also would give some indication of the number of complex problem
reports, because an older report that has not been closed may have remained
open due to its difficulty.

It may be desirable to expand the Computer Resource Utilization metric
S .to track utilization for each resource unit. The rationale for this is

that, for example, without separate reporting for each processor in a
multiprocessor system, the total amount of CPU time consumed might be an
average across processors. This figure may be below the desired spare, but
one particular processor may be well above the limit, while another is
significantly below. Tracking by resource unit would alleviate this
confusion. In addition, both average and worst case utilization estimates
could be collected. Another possible expansion for this metric is to

m5 collect data on both target and development machines, if the contractor L
plans to develop the software on a machine that is different from the
target machine.

The Software Volatility metric counts the number of SLOCs affected by
an ECP, as well as the number of open review discrepancies. It may be

U desirable to also track the length of time that a review discrepancy has
, been open. The rationale for this expansion is similar to that given for

* tracking the length of time that problem reports are open. In addition,
the Software Volatility metric colild be expanded to track the number of
units that are affected by an ECP, as well as the number of SLOC.

The Incremental Release Content metric tracks the number of units
planned for each release in order to monitor whether any capabilities are
being shifted from an earlier release to a later release. The metric can
be expanded to also track the number of CSCs in each release as another
gauge of capabilities to be included in any given release.

The above paragraphs represent sample ways in which the metrics can be

expanded to address specific areas of concern for a project. Data items
have been included in Appendix C to illustrate the data field definitions

necessary to insure collection of an expanded set of metrics. The reader
is cautioned that these data items are intended to be representative; each
program that implements the metrics should be careful to analyze which, if

I. [any, of thpse expansions are appropriate, and identify other expansions as "
needed.

37

F- " - .- - .., """ .. -, . """"•"" . .o -, ---'''""" v -'.,. ' ,., . , ," -

61L

2. IMPLEMENTATION OF DATA COLLECTION

Once data requirements to support metrics reporting have been defined, '

the SPO must identify mechanisms for actual delivery of the metrics data
from the contractor. Two schools of thought exist on how the contractor
should provide the data. One opinion is that the contractor should supply
the data in digital format. This could be accomplished by requiring that
the data be submitted on a magnetic tape or floppy disk each reporting
period. Another mechanism for digital collection could be via electronic
data transfer from the contractor's computer system to a computer system
available to the SPO. Potentially, most of the data that is required
should already exist in digital form in the contractor's configuration,
personnel, and other management systems. Delivery of the data in digital
format, therefore, should not provide any additional burden for the
contractor, and may in fact reduce the effort necessary to provide the
data. In addition, the SPO can process the data on-line instead of
translating data in hard copy form to digital form. The major advantage of
such a collection mechanism is in being able to quickly process and graph
the metrics data upon receipt. Assuming the SPO had some computer system
that would support these functions (see discussion below), the time for
clerical duties regarding making the data available would be reduced,
providing more time for actual analysis.

The second opinion is that the contractor should provide the data in
the form of written CDRL submissions or as a part of his presentation at
Program Management Reviews. The rationale here is that the SPO would have

* to extract this information and, in the process, would become more
conscious of the data and its analysis. This school of thought is prompted 1.
by concern that the automated approach will lead to inaccuracies in the
data reported, misinterpretations of the data, and will thus detract from
the level of attention that should be given to the metrics data analysis.

There are tradeoffs involved in either collection mechanism. The SPO
must decide which mechanism is appropriate and the degree of integrity that

rkcan be achieved when the data is collected manually versus electronically. P,

3. AN AUTOMATED) CAPABILITY FOR METRICS PROCESSING

Once data definition and data collection mechanisms have been defined,
and data is being delivered in some form to the SPO, the SPO must have a
capability to store, process, and plot the data. The following paragraphs
describe a preliminar; prtotype effort to develop such a capability.

The architecture selected for the prototype uses a relational database
on a centralized processor connected via data communications to a
workstation with spreadsheet and graphics capabilities. By utilizing a r
relational database on a centralized processor, the extensibility of the

18i

system is enhanced. Metrics data for many projects can be stored in a
common location enabling access to data across projects. This enables the
formulation of a historical database that could be analyzed for "lessons
learned." In addition, othei data elements can be added to a particular
project's database to support common use of the project database among
different software acquisition tools. This environment permits data
sharing, reduces data replication, and increases data integrity.

*- The centralized database can be updated via manual data entry,
electronic transfer from another system, or via tape. To accomplish these .

. tasks, it is possible to use the workstation as a dumb terminal connected
to the central processor. Once the centralized database has been updated,
the data can be downloaded to the workstation where it can be graphed and
manipulated. Downloading data to the workstation, allows the use of a
spreadsheet package to manipulate the data independently of the centralized
database. This enables the SPO to alter the data for trade-off analyses
without affecting the integrity of the centralized database. The
spreadsheet package provides the capabilities to produce graphical displays
similar to those contained in the previous section.

The user's view of the system is simplified by command files and
spreadsheet macros that reduce the user interaction to a minimum. To use
the system, a command file is invoked on the workstation. It executes a

*" communications package that allows the user to log on to the centralized
[[processor. Once logged on, the user has control of a menu driven command t ,. '%

" "- process that allows him to enter, update, query, or extract data from the
database. The extraction routine not only extracts data from the database,

*but orchestrates its downloading to the workstation. When the user has
completed his centralized processor tasks he can terminate the connection.
The workstation command file then executes the spreadsheet package. The
user selects the spreadsheet corresponding to the metric that he wishes to
process. A number of spreadsheet macros handle the importing of the appro-
priate data and setting the ranges that are required for the graphic
displays.

The initial implementaion of the prototype uses a VAX 11/780, running
VMS with the Rdb relational DBMS, as the centralized processor. The
workstation is a Z-100 running Z-DOS with PC/Intercomm (a communications
package) and LOTUS 1-2-3 (a spreadsheet package with macro and graphical
display capabilities). p

L
• • V .- '

' " 39 " .

r

p.-..-.

I~r. SECTION IV

CONTINUING METRICS EFFORTS

Revision 2 of the Software Reporting Metrics document was
prepared in response to comments received from a variety of Air
Force, MITRE, and industry personnel. However, many outstanding
issues remain to be addressed. This section outlines some of the
outstanding issues by first presenting general topics to be
addressed, followed by a list of specific comments requiring further
research. This is followed by a brief discussion of other activities
to be pursued to enhance application of the metrics. 71
1. GENERAL COMMENTS TO BE ADDRESSED

S." The following paragraphs present general topics for refining and
augmenting the original metrics.

It is recognized that there are a significant number of related
efforts being pursued to measure the quality of the software
acquisition process and the software product itself. Some examples
are the RADC metrics work, the STARS measurement activity, the AFSC
indicators, and the IEEE metrics efforts. A comparison of these

* "metrics with the metrics presented in this report should be
undertaken to identify how the results of these efforts can be I

[] transitioned into practice.

Another activity is to perform case studies of software
acquisitions that have used the metrics and use the feedback received
to improve the metrics. This activity would also be useful to
validate the metrics.

A study should be made to investigate the context of the metrics
to identify where they fit in the acquisition process and how they
complement and relate to one another. The existing metrics tend to
concentrate on the development phase of software acquisition by
collecting more information after CDR and before FQR. Front-end and
back-end metrics may be needed to address the requirements definition
and maintenance phases, respectively, and to effectively monitor the
entire software acquisition effort.

The addition of project management metrics and quality metrics
also has been suggested. The present metrics are status-oriented and
do not necessarily address the quality of management or the quality
of software deliverables. They address status as a means of

41

744

ft

monitoring progress, but do not consider the quality of the
monitoring process nor the software itself. Some effort to define
additional metrics that address these areas should be pursued.

Another comment, related to the one above, suggests the addition -.
of a matrix of process metrics versus product metrics. Process
metrics examine the activities that encompass the production of the
product while product metrics examine the finished product. It would
be useful to identify those metrics that address each of these
activities.

2. SPECIFIC COMMENTS TO BE ADDRESSED

The following paragraphs are comments on specific metrics that "
were received but not integrated into this revision. Further
investigation is required to integrate these comments.

The subjectivity of the Software Complexity metric was a subject
of several comments. Replacing or augmenting the existing complexity
measure with one that is less subjective than the measure based on
Boehm's work would address these comments. A revised Software
Complexity metric would probably draw upon the complexity measuring
work of Halstead (Ref. 2), McCabe (Ref. 3), and Albrecht (Ref. 4).

The addition of other data to increase the value of the : .
Development Progress metric was suggested. This data might include
CSCI status, CSC status, B-5 status, C-5 status, and a count of the
number of patches added to get through testing. Defining how to
track the status of these items and how to interpret the data are
left as future activities.

Another comment suggested using "threads" as the item to be
tracked in the Testing Progress metric. The use of threads would add
a functional perspective to the testing. It is felt that a function
test is more meaningful than a unit test as a gauge of testing
progress.

The Testing Progress metric also could be modified to count the
number of SLOC affected by problem reports. This would give an * .
indication of the severity or effort required to resolve the problem.
To incorporate this comment will require an understanding of what
constitutes "affected SLOC".

42

. ,f

.t.. . ~
- . - ... h .. -. -. • . . -. -. .- ,- -s- -- .- " -. .-. . ..- . . '. .f .- . .- t -... -f . - ...-'-'-'e '' .. - ..-' .. - .

ECPs have been identified as insufficiently responsive to act as
a leading indicator of software volatility. In addition, measuring
the SLOC affected by an ECP adds a degree of uncertainty and subject-
ivity to the metric. Measures of Issue Reports (also called Investi-
gation Requests) have been proposed as a potential substitute. These
reports identify problems in requirements found while establishing

.7 3. FUTURE ACTIVITIES IN APPLICATION OF THE METRICS i
Section III of this document presented some guidance on how to

apply the metrics to a particular project and the use of automated
aids. The following paragraphs briefly discuss areas for expansion
in application of metrics on a project.

* One area that must be considered is how to integrate the metrics

information with other status reports and tools used by the SPO to
monitor a software acqulisition. These include the Cost Performance
Reporting (CPR), cost estimation, and program scheduling information L.
potential for integration with the metrics to maximize their use..-
For example, it is possible that more accurate and up-to-date cost
and schedule estimates could be derived throughout the acquisition by
using the metrics data as an input. In addition, the Cost
Performance Report contains an extensive amount of information for

* the SPO to use in monitoring the acquisition. Efforts to identify
* areas for correlation and integration of this data with the metrics

will be pursued as a future activity.

Another planned area for investigation is to expand the existing
metrics workstation prototype to improve its features and add
additional functions. In addition, integration with other SPO tools
is to be investigated and implemented in future prototypes.

43

REFERENCES

For further reading:

" 1. Boehm, Barry W. Software Engineering Economics;
Englewood Cliffs, New Jersey,
Prentice-Hall, 1981.

This book describes the operation and
philosophy behind one of the important
software cost estimating models in use
today.

2. Halstead, M.H. Elements of Software Science;
Elsiver, New York, pp. 274-279, 1977.

-: 3. McCabe, T.J. "A Complexity Measure,"
IEEE Transactions on Software
Engineering, Vol. SE-2, No.4,
pp. 308-320, December 1976

4. Albrecht, A.J. and "Software Function, Source Lines of
Gaffney, J.E., Jr. Code, and Development Effort Prediction:

A Software Science Validation," IEEE
Transactions on Software Engineering,
Vol. SE-9, No.6, pp. 639-648, November

* 1983.

5. Pressman, Roger S. Software Engineering : A Practitioner's

Approach, New York, McGraw-Hill, 1982.

This book provides an introduction to
the methodology of acquiring software.
Most of the cost estimation information
in chapter four is more usefully
covered in Boehm's book; but the
remainder of this book provides a
useful perspective on the process of
acquiring or developing software.

.. 4
" '-:::45

*9'

,° ." ,.............**.. *~.......

'X '"...""" "', - ', " - , S " '*- .v"" .. ._" " r, ' '-P ''* - - '-. - -' ' ' ' .' .' ' " ? .: -.-.-. -.. ,. ... '. .- . .. *. . -*.Ni.._'_ _ _, , ,.: , ,- ,_ _ - _ .b , ._-..*

APPENDIX A

GENERAL INFORMATION REGARDING SOFTWARE DEVELOPMENT

The metrics described in the Section 11 were accompanied by some
notes that relate to each metric. This section contains additional

* information that is applicable to many software acquisitions. It has
been obtained from personnel involved in previous software acquisi-
tions and from Ref. 1 and Ref. 4. This information is intended to

* provide general, rather than hard and fast, guidance. Exceptions to
these guidelines may be appropriate for specific programs; but
whenever exceptions are made it is important to have a detailed
understanding of the justifications. Information applicable to the
overall acquisition will be presented first. Some additionaleinformation is presented in a sequence that corresponds to the stages
in the software development cycle.

1. GENERAL

S ~Wide variations in schedule/effort profiles have been followed -

by different projects. The following general information should not
be misused through overly specific interpretation. It is offered
here on the premise that some guidance is better than none. For more
data see Ref. 1. Contributors to wide variations in schedule/effort
performance are the availability and use of modern software
development tools such as Program Design Languages (PDLs), automated
debugging facilities, data base design tools, etc.

*A. Schedule for Software Development

The number of calendar months (M) from the beginning of
software design to the end of Formal Qualification
Review (FQR) is related to the number of software

* development Staff Months (SM) necessary to complete the
software. (Complete software refers to software that has

* . been designed, coded, tested, integrated and documented.)

* L The following formulas have been empirically derived from
the COCOMO data base. The formulas describe curves for
three project percentile values. For example, only 10

- - percent of the projects in the COCOMO database were able
to preserve a schedule equal to or shorter than that

schedule predicted by M = 2* S

47

, % ,- - .- , . a - .a9 aZa. 4, . 4.. -> -:. -. " -. " "5 "-. ..-" - . "- - ." ' -- . -..--... ---- .--- .-- - -] r,- -

Percentile "..

M = 2* -S 10%

M = 2.5 * r 50%

M = 3* NSM 90%

B. Lines of Code per Staff Month

Typical SLOC/SM values are:

150 for easy code -

70 for medium complexity code -
30 for complex code

Note: The Staff Months (SM) refer to the number of
software staff months for design, code, test, integration,
and documentation expended from contract award through
FQR.

C. Contractor's Resource Availability

The contractor should have access to the necessary
computer resources for software development. Among the
resources required are development and target systems,
system software, management software, application ,
development tools, etc.

D. Allocation of Staff and Schedule for Software Development

These are typical values experienced on embedded software ,
programs similar to the C3 I systems developed at ESD.
Wide variations from these values have been observed but
lessons learned indicate that increases in design effort .-
lead to reduced integration and test effort and to higher .-

quality products.

Staff Months Schedule

Design 45% 50%
Code and Unit Test 20% 15%
Integration and Test 35% 35% ..-

48

• , .,. . °...

La

2. PHASE SPECIFIC

A. Pre-Award

1. Resource Availability:

Software development resources should be evaluated in a . .

manner similar to that for hardware manufacturing
facilities:

(a) Large software development projects should use
modern methodologies with automated support
tools for software development.

(b) Sources for experienced software engineering
support must be identified and available during
the designated software development time
period.

2. Requirements Definition:

System requirements must not be confused with design or
implementation details or vice versa.

3. Contract Preparation:

The Instructions for Proposal Preparation (IFPP),
Statement of Work (SOW) and Contract Data Requirements
List (CDRL) should be structured to require the contractor
to deliver the data for the reporting metrics.

"'. B. Source Selection

1. Difficult and risky functions should receive early
and adequate attention. Workable solutions should be
demonstrated before start of Full Scale Engineering

Development (FSED).

2. The software development schedule needs to
accommodate the practicalities of the process. It should

not be "success oriented." Schedule compression adds
. "greatly to cost and does not generally produce an earlier

product.

3. The difficulty of a project increases as more
organizations, government as well as contractor,
participate. The Government should avoid becoming an
interface between two or more contractors.

49 -,

IN
" " . %-- -. .

". '- '-.- '- -.-...- -.- "' J *- .'-'' . " ". " . ". .
•

• . .- - -'."-. - ''-, '% ' " " , - . % ° ." '

4. The Government should assure that any software
development by subcontractors is closely managed by the
prime contractor.

5. Large development projects should have functional
capabilities implemented in phased releases. If schedule
problems develop, useful capabilities can be provided
before the development program is completed.

C. Preliminary and Critical Design Reviews L

1. Development should not be allowed to proceed faster
than the achieved ground work can support. The design
should not advance beyond requirements definition, coding
beyond the design, testing beyond the stability of the
product, etc.

2. Monthly or bimonthly Software Technical Interchange -

Meetings (TI~s) should supplement the formal reviews.
Programs that are large or on tight schedules should have
in-plant Government technical representatives so that more
frequent contact is maintained between the developers and

the acquisition agency.pr

D. Test and Integration

1. Software testing should be done by a separate and
independent organization from that which developed the
software.

2. Formal software acceptance testing should allow for
time and access to the equipment in which the Government
can exercise the system.

3. Integration test planning should be completed early
enough to: 1) ensure test issues can influence desig.,
and 2) allow long-lead-timne test facilities to be
acquired. For most programs, test planning should have
started before PDR.

3. REMINDER

Metrics should not be substituted for dialog. When a metric
indicates a potential problem, that should be a motivator for .-

dialog.

K 50

-7 ~ ~ ~ ~ . -- " ' l--I-

APPENDIX B

GENERIC METRIC DATA ITEMS

The following list of data items reflects the software reporting
metrics as presented in this report. They are a minimal set and may

.- require enhancement for a particular software development effort. If
the data items are to be obtained via Data Item Descriptions (DIDs),
they should be added to existing DIDs where possible, such as the
Software Development Plan DID, to ensure that the same data is not
requested twice.

For each metric, the data required for the Current Reporting
Period and for the Forecasted Reporting Periods is listed.

Appendix D, Data Definitions, clarifies potentially ambiguous
terms.

I. SOFTWARE SIZE

A. Current Reporting Period

1. Current Reporting Period
2. The estimated total of SLOC newly developed for this

system
3. The estimated total of SLOC modified for this system

* p4. The estimated total of SLOC lifted for this system

B. Forecasted Reporting Periods

Not applicable

II. SOFTWARE PERSONNEL

A. Current Reporting Period

1. Current Reporting Period
2. The actual total number of Staff during the period
3. The actual number of experienced Staff during the

current period
4. The actual number of Staff leaving the software

development effort during the current period
5. The actual number of Staff added to the software

development effort during the current period

51

B. Forecasted Reporting Periods

1. Current Reporting Period
2. Forecasted Reporting Period
3. The estimated total number of Staff during the

forecasted period

4. The estimated number of experienced Staff during the
forecasted period

III. SOFTWARE COMPLEXITY I

A. Current Reporting Period

1. Current Reporting Period
2. Weighted Complexity Rating based on Barry W. Boehm's

Table of Complexity Ratings and the relative size of
each CSCI

B. Forecasted Reporting Periods

Not applicable.

IV. DEVELOPMENT PROGRESS

A. Current Reporting Period

1. Current Reporting Period
2. The actual number of units designed during the current

reporting period
3. The actual number of units tested during the current

reporting period
4. The actual number of units integrated during the current

reporting period 7

B. Forecasted Reporting Periods

1. Current Reporting Period

2. Forecasted Reporting Period
3. The estimated number of units to be designed during the

forecasted reporting period
4. The estimated number of units to be tested during the

forecasted reporting period
5. The estimated number of units to be integrated during

the forecasted reporting period

52

...I.-"',-.': ,A. L> " >'' :".- . " ,,'' - ': - - ' ____'_-__ _ . .. _ _-_ _ _ --_ " '_-

V. TESTING PROGRESS ".

RN A. Current Reporting Period k

1. Current Reporting Period
2. The actual number of tests passed during the current

period
3. The actual number of new testing problem reports

occurring during the current period
4. The actual number of testing problem reports unresolved

during the current period
5. The actual number of testing problem reports resolved

during the current period

B. Forecasted Reporting Periods

1. Current Reporting Period
2. Forecasted Reporting Period

3. The estimated number of tests to be passed during the
forecasted period

VI. COMPUTER RESOURCE USAGE

"A. Current Reporting Period

1. Current Reporting Period
2. Computer Resource Identifier
3. The estimated percentage of CPU usage for the system
4. The estimated percentage of Memory usage for the system

5. The estimated percentage of I/0 usage for the system

B. Forecasted Reporting Periods

Not applicable

VII. SOFTWARE VOLATILITY

A. Current Reporting Period

1. Current Reporting Period
2. The estimated total number of SLOC affected by ECPs

during the current period
3. The number of newly opened review discrepancies -...-

"- 't occurring during the current period '."

4. The number of review discrepancies not resolved during

the current period

53

* -, . pp

B. Forecasted Reporting Periods

Not applicable.

VIII. INCREMENTAL RELEASE CONTENT

A. Current Reporting Period

1. Current Reporting Period
2. Release Identifier
3. The number of units in the release

B. Forecasted Reporting Periods

Not applicable

wi L

54

d - 1

APPENDIX C

ENHANCED METRIC DATA ITEMS

The following list of data items will assist those persons
writing or modifying a Data Item Description (DID) or calling for
Program Management Review (PMR) deliverables for the collection of
the metrics presented in this report for a particular software
development effort.

These data items illustrate the expansion of the Generic Metric
Data Items in Appendix B. The customization is necessary when
adapting the metrics to a particular software development effort.
For each metric, the data required for the Current Reporting Period
and for the Forecasted Reporting Periods is listed. Appendix D, Data
Definitions, clarifies potentially ambiguous terms.

I. SOFTWARE SIZE

For each CSCI:

A. Current Reporting Period

1. Current Reporting Period

- 2. CSCI Identifier

3. Source Code Language
4. The estimated total of SLOC newly developed

' - 5. The estimated total of SLOC modified
6. The estimated total of SLOC lifted

B. Forecasted Reporting Periods

Not applicable

II. SOFTWARE PERSONNEL

For each CSCI:

A. Current Reporting Period

1. Current Reporting Period
2. CSCI Identifier
3. For each experience category, the actual number of staff

in the experience category during the current period

55

_"..-" -- ' . - . '. -- • '."

1.7-

4. The actual number of Staff leaving the software
development effort during the current period

5. The actual number of Staff added to the software
4development effort during the current period

B. Forecasted Reporting Periods

1. Current Reporting Period
2. Forecasted Reporting Period
3. CSCI Identifier
4. For each experience category, the forecasted number of

staff in the experience category during the forecasted
period

III. SOFTWARE COMPLEXITY

For each CSCI:

A. Current Reporting Period

1. Current Reporting Period

2. CSCI Identifier
3. Weighted Complexity Rating based on Barry W. Boehm's

Table of Complexity Ratings and the relative size of
each CSCI

4. Thomas McCabe's cyclomatic complexity rating

B. Forecasted Reporting Periods

Not applicable.

IV. DEVELOPMENT PROGRESS

For each CSC:

A. Current Reporting Period

1. Current Reporting Period

2. CSCI Identifier
3. CSC Identifier
4. The actual number of units designed during the current

reporting period
5. The actual number of units tested during the current

reporting period
6. The actual number of units integrated during the current

reporting period b

56

4, ..4 ..

B. Forecasted Reporting Periods

PM 1. Current Reporting Period
2. Forecasted Reporting Period
3. CSCI Identifier
4. CSC Identifier
5. The estimated number of units to be designed during the

forecasted reporting period
6. The estimated number of units to be tested during the

forecasted report ing period
7. The estimated number of units to be integrated during

the forecasted reporting period

* .V. TESTING PROGRESS

For each CSCI:

A. Current Reporting Period

1. Current Reporting Period
2. CSCI Identifier
3. The actual number of tests passed during the current

period
4. The actual number of new testing problem reports

occurring during the current period
5. The actual number of testing problem reports resolved

during the current period

6. The actual number of testing problem reports unresolved
during the current period

7. The actual number of testing problem reports unresolved
during the current period that are older than two but
less than three reporting periods

8. The actual number of testing problem reports unresolved
during the current period that are older than three
reporting periods

B. Forecasted Reporting Periods

1. Current Reporting Period
2. Forecasted Reporting Period3. CSCI Identifier

4. The estimated number of tests to be passed during the
forecasted period "

-. -. 57

°° %

..-.-..• " '. .•". ' " , a,.. ° ". .. '". ..' .. ,..." -. . ." -. ".".-", -- _."''," ' . _ _,T, .2 - _' 2

C.-. - V.-T-T-TIT* TI 7.2bb3.9.1b7..t- T- C -

VI. COMPUTER RESOURCE USAGE

A. Current Reporting Period

1. Current Reporting Period
2. Category (Development or Target)
3. Computer Resource Identifier
4. The estimated percentage of average CPU usage for the

system
5. The estimated percentage of average Memory usage for the

system *

6. The estimated percentage of average I/O usage for the
system

7. The estimated percentage of worst case CPU usage for the -*

system
8. The estimated percentage of worst case Memory usage for

the system
9. The estimated percentage of worst case 1/O usage for the

system

B. Forecasted Reporting Periods

Not applicable

VII. SOFTWARE VOLATILITY

For each CSCI:

A. Current Reporting Period

1. Current Reporting Period
2. CSCI Identifier
3. The estimated total number of SLOC affected by ECPs

during the current period
4. The estimated total number of units affected by ECPs

during the current period
5. The number of newly opened review discrepancies

occurring during the current period
6. The number of review discrepancies not resolved during

the current period
7. The number of review discrepancies not resolved during

the current period that are older than two but less than
three reporting periods

8. The number of review discrepancies not resolved during
the current period that are older than three reporting
periods

58

........................r

L \

B. Forecasted Reporting Periods

Not applicable

VIII. INCREMENTAL RELEASE CONTENT

- . A. Current Reporting Period

S--1. Current Reporting Period

2. Release Identifier
3. The number of units in the release

B. Forecasted Reporting Periods

Not applicable

,. . : , - ,

*M

L.

* ~59 I..

.

.

777-

% 4.

N
NO

*4 % % . -. - -

APPENDIX D

DATA DEFINITIONS

SLOC: Source Lines of Code - all executable statements
Note: a tighter definition should be developed
depending on the source code language. Also, SLOC

a-. could be broken down into categories: Comments,
Data Declarations, and Executable Statements.

Lifted SLOC: SLOC 'copied' from another source, then reused
without change.

Modified SLOC: SLOC 'copied' from another source, modified, then
used.

*New SLOC: SLOC newly developed, that is, not copied from
another source.

Experience1Category: These are categories that define the different
degrees of experience and capabilities of the
software development staff.

Reporting
Period: A symbol for denoting the intervals for which the

* software reporting metrics are collected. For
example, if the reporting period is monthly, the
reporting period could be the number of the month -

after contract award.

Source Code
Language: The language used during software development, for

example, PL/I, Ada, Assembler, and so on.

Staff: All those directly involved in the software
development effort including Project Manager,
Project Leader, Programmer, Quality Assurance Staff,
and Configuration Management Staff. Also, a person
or the fractional amount of a person's time devoted
to the software development effort; for example, a
staff member who is devoting only half time to this
program would be counted as (.5).

t Target Computer
Resource: The computer resource to be used in the delivered

operational system.

61

I. - . - .. ~ ,~ .. ~~ -

.l..~.

~Ia
~

1~
ak..

b ~ h
V '.. 4,

~
P

.1

,~ -

x

p

* V.

Iq~

'---S.. ***

.. * -.....-. **--*..*.-...-.*-**.. ~ S..*.. ** S. *~

L.I.

DTIC

%...

* FILMED
* .

